

Microwave-Assisted Preparation of Fused Bicyclic Heteroaryl Boronates: Application in One-Pot Suzuki Couplings

Erin F. DiMauro* and Jason R. Vitullo†

Department of Chemistry Research and Discovery, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139

erin.dimauro@amgen.com

*Recei*V*ed February 1, 2006*

The rapid and efficient synthesis of various disubstituted 5,6 fused heterocycles using a microwave-assisted one-pot cyclization-Suzuki coupling approach is described. This work highlights the tolerance of the boronic ester functional group to a variety of reaction conditions and the utility of functionalized boronates as penultimate intermediates in the synthesis of diverse compound libraries.

The broad utility of Suzuki-Miyaura coupling reactions is widely appreciated in the synthetic community.¹ Consequently, the establishment of new routes to functionalized boronic acid and boronic ester precursors is an ongoing effort in several research groups.2 Substituted 5,6-fused heterocycles can be found in many types of synthetic and naturally occurring medicinal substances.3 The exploration of convenient synthetic routes to these compounds is a priority in drug discovery and the benefits of microwave-assisted approaches are becoming increasingly evident.4

To expand the scope of our small molecule drug discovery programs, we wished to identify practical and general microwave-

SCHEME 1. Retrosynthetic Routes to Target Libraries 1-**³**

assisted synthetic routes to access a variety of 2,5-disubstituted b enzo[*b*]thiophenes,⁵ benzo[*b*]furans,⁶ and 2,6-disubstituted imidazo[1,2-*a*]pyridines,7 exemplified by quinazolines of general structures **¹**-**3**. We sought divergent routes that would allow for easy variation of the aryl group at $C5/C6$ and the $R¹$ group at C2. Thus, we set out to prepare small libraries of 2-substituted (benzo[*b*]thiophen-5-yl)boronates (**5**), (benzo[*b*]furan-5-yl)boronates (**6**), and imidazo[1,2-*a*]pyridine-6-boronates (**7**), each of which could be coupled under Suzuki conditions to a variety of bromoquinazolines (**4**) in order to obtain a diverse set of target libraries $1-3$ (Scheme 1). An alternative strategy to libraries **¹**-**³** would involve reversing the Suzuki coupling partners. The drawback of this route lies in the requirement for the preparation, purification and storage of multiple quinazoline boronates derived from bromides **4**. In our hands, such derivatives were difficult to isolate owing to their insolubility in organic solvents and instability to silica gel chromatography. Also, this approach would require that \mathbb{R}^2 be compatible with the reaction conditions necessary for the formation of the boronate from **4**.

Our initial efforts were focused on identifying convenient routes to boronates **5** or **6** toward target libraries **1** and **2**. The most obvious synthetic route to compounds such as **6** involves the conversion of 5-halobenzofurans (**9**) to boronic esters or acids using Pd(0) catalysis or lithiation-substitution (Scheme 2). A major limitation with this approach is that \mathbb{R}^1 must be compatible with the reaction conditions required for the formation of the boronate. Furthermore, for library generation or

^{*} To whom correspondence should be addressed. Tel: 617-444-5189. Fax: 617-621-3907.

[†] University of Pennsylvania.

^{(1) (}a) For a review, see: Suzuki, A. *J. Organomet. Chem.* **1999**, *576*, ¹⁴⁷-168. (b) Bellina, F.; Carpita, A.; Rossi, R. *Synthesis* **²⁰⁰⁴**, *¹⁵*, 2419- 2440.

^{(2) (}a) Zenk, R.; Partzsch, S.; *Chimica Oggi* **²⁰⁰³**, *²¹*, 70-73. (b) Tyrrell, E.; Brookes, P. *Synthesis* **²⁰⁰³**, *⁴*, 469-483.

^{(3) (}a) Jones, G., Ed. *Comprehensive Heterocyclic Chemistry. II. Volume* 8: *Fused Five-and Six-Membered Rings with Ring Junction Heteroatom*; *8: Fused Fi*V*e-and Six-Membered Rings with Ring Junction Heteroatom*; Pergamon: Oxford, 1996. (b) Ramsden, C. A., Ed. *Comprehensive*
Heterocyclic Chemistry II Volume 7: Fused Five-and Six-Membered Rings *Heterocyclic Chemistry. II. Volume 7: Fused Fi*V*e-and Six-Membered Rings without Ring Junction Heteroatom*; Pergamon: Oxford, 1996.

^{(4) (}a) Kappe, C. O.; Dallinger, D. *Nat. Re*V*. Drug Disco*V*ery* **²⁰⁰⁶**, *⁵*, 51-63. (b) Besson, T.; Braun, C. T. In *Microwave Assisted Organic Synthesis*; Tierney, J. P., Lidström, P., Eds.; CRC Press: Boca Raton, FL, 2005; pp $44 - 74$.

⁽⁵⁾ For a review on the synthesis of benzo[*b*]thiophenes, see: Rayner, C. M.; Graham, M. A. *Sci. Synth.* **²⁰⁰¹**, *¹⁰*, 155-184.

⁽⁶⁾ For a review on the synthesis of benzo[*b*]furans, see: Dell, C. P. *Sci. Synth.* **²⁰⁰¹**, *¹⁰*, 11-86.

⁽⁷⁾ For a review on the synthesis of azaindolizines (including imidazopyridines), see: Hajos, G.; Riedl, Z. *Sci. Synth.* **²⁰⁰²**, *¹²*, 613-678.

SCHEME 2. Common Route to (Benzo[*b***]furan-5-yl)boronates***^a*

^a Key: (a) (i) BuLi, (ii) B(OMe)3, (iii) HCl; (b) cat. Pd(0), bis(pinacolato)diboron, KOAc, ∆.

SCHEME 3. Route A to Target Libraries 1 and 2

medicinal chemistry applications, it would be preferable to introduce the diversity element $R¹$ later in the reaction sequence. Recently, derivatization of functionalized arylboronic acids has been accomplished using a solid-phase resin immobilization strategy.8 Similarly, there have been several reports of derivatization of functionalized arylboronic esters.⁹ The most recently developed method for the formation of 2-substituted (benzo[*b*] furan-5-yl)boronate esters **6** from functionalized aryl boronic esters is lengthy and low yielding.^{9c}

We first examined the reaction of α -activated alcohols or thiols with 2-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (**11**) followed by coupling of the boronate intermediates **5** or **6** with 6-bromoquinazolin-2-amine (**4a**, R2 $= NH₂$) (route A, Scheme 3). Although 11 can be obtained by the reaction of pinacol and 4-fluoro-3-formylphenylboronic acid as previously demonstrated,9a we prepared **11** in 82% yield directly from commercially available **10** using the method of Miyaura et al.10 For formation of **5** or **6**, the desired transformation is an S_NAr with concomitant condensation and cyclization. The activating group R^1 on the alcohol/thiol should be aryl, ester, amide, $NO₂$, CN, etc., such that the basicity and nucleophilicity of the alcohol/thiol is somewhat attenuated and

TABLE 1. One-Pot Preparation of 5 and Conversion to 1: $({\bf Step 1})^a$ **11** + **HSCH₂R¹** $({\bf Step 2})^b$ **5** + **4a**

entry		R ¹	T^b ($^{\circ}$ C)	$t^{\rm b}$ (h)	% yield
	1a	CO ₂ Et	90	0.5	57
	1b	$CO2i-Pr$	90	1.0	60
3 ^c	1c	CO ₂ H	95	1.0	24
4 ^d	1d	CONHPh	90	1.0	41
5	1e	CONHMe	95	1.5	17

^{*a*} Step 1: 1.0 equiv of 11, 1.1 equiv of HSCH₂R¹, 1.0 equiv of K₂CO₃, *µ*W, CH3CN, 140 °C, 0.5 h. *^b* Step 2: 0.8 equiv of **4a**, 0.13 equiv of Pd(dppf)Cl₂, 1.6 equiv of K₂CO₃, H₂O/CH₃CN (1:3); μ W, *T* and *t* as reported. ^{*c*} Step 1: CH₃CN/EtOH (1:1), 1 h. Step 2: 1.0 equiv of K_2CO_3 , 0.3 equiv of Pd(dppf)Cl2, H2O/CH3CN/EtOH (1:2:1). *^d* Step 2: 1.5 equiv of $4a$, 0.3 equiv of $Pd(dppf)Cl₂$.

the methylene hydrogens are rendered acidic. Although route A is an atypical method for the preparation of benzofurans, similar methodology has been employed in the prepartion of $\frac{b}{b}$ thiophenes.^{11,12} Furthermore, 11 has been used as a substrate for nucleophilic aromatic substitutions.^{9a}

The reaction of **11** and ethyl mercaptoacetate was examined in the microwave using a variety of organic solvents and bases. Optimal conditions for the preparation of 2-ethylcarboxylate- (benzo[*b*]thiphen-5-yl)boronate (**5a**) in 74% yield were quickly identified (eq 1).

We then determined that crude **5a**, prepared in this manner, can be *used directly without workup, in a subsequent microwaveassisted Suzuki coupling* to bromoquinazoline **4a**. Likewise, 2-mercaptoacetic acid and derivatives were condensed with **11**, and the resulting crude boronates were coupled with **4a** to prepare target compounds **1a**-**^e** (Table 1). Attempts to condense benzylmercaptan boronates $(R¹ = Ar)$ with 11 were unsuccessful.¹³ In these cases, the S_NAr intermediates, observed by LCMS, were reluctant to cyclize to the benzothiophenes, presumably because of the decreased acidity of the α -protons.

Despite numerous attempts, no conditions were identified to prepare the analogous 2-ethyl carboxylate-(benzo[b]furan-5-yl)boronate intermediate **6a** in acceptable yield from **11** and ethyl 2-hydroxyacetate.¹⁴ As anticipated, the required S_NAr reaction is significantly slower with the alkoxide nucleophile than with the thiolate. Route A for target library **2** was therefore abandoned.

Next, we investigated the reaction of α -activated halides with 2-hydroxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (**12**) (route B, Scheme 4). While this method is commonly employed in the synthesis of 2-substituted benzo- [*b*]furans,15 it has not been demonstrated in the presence of a

⁽⁸⁾ Gravel, M.; Thompson, M. Z.; Berube, C.; Hall, D. G. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 3-15.

^{(9) (}a) Holland, R.; Spencer, J.; Deadman, J. J. *Synthesis* **²⁰⁰²**, 2379- 2382. (b) Spencer, J.; Burd, A.; Goodwin, C. A.; Metrette, S. A. M.; Scully, M. F.; Adatia, T.; Deadman, J. J. Tetrahedron 2002, 58, 1551-1556. (c) M. F.; Adatia, T.; Deadman, J. J. *Tetrahedron* **²⁰⁰²**, *⁵⁸*, 1551-1556. (c) McKierman, G. J.; Hartley, R. C. *Org. Lett.* **²⁰⁰³**, *⁵*, 4389-4392. (d) Bois-Choussy, M.; Cristau, P.; Zhu, J. *Angew. Chem., Int. Ed.* **²⁰⁰³**, *⁴²*, 4238- 4241. (e) Kaiser, M.; Siciliano, C.; Assfalg-Machleidt, I.; Groll, M.; Milbradt, A. G.; Moroder, L. *Org. Lett.* **²⁰⁰³**, *⁵*, 3435-3437. (f) Schulz, M. J.; Coats, S. J.; Hlasta, D. J. *Org. Lett.* **²⁰⁰⁴**, 6, 3265-3268. (g) Lautens, M.; Mancuso, J. *J. Org. Chem.* **²⁰⁰⁴**, *⁶⁹*, 3478-3487. (h) Moore, J. E.; York, M.; Harrity, J. P. A. *Synlett* **²⁰⁰⁵**, 860-862. (i) Moore, J. E.; Davies, M. W.; Goodenough, K. M.; Wybrow, R. A. J.; York, M.; Johnson, C. N.; Harrity, J. P. A. Tetrahedron 2005, 61, 6706–6714. (j) Zhang, H.; Vogels, Harrity, J. P. A. *Tetrahedron* **²⁰⁰⁵**, *⁶¹*, 6706-6714. (j) Zhang, H.; Vogels, C. M.; Wheaton, S. L.; Baerlocher, F. J.; Decken, A.; Westcott, S. A. *Synthesis* **²⁰⁰⁵**, 2739-2743.

⁽¹⁰⁾ Ishiyama, T.; Murata, M.; Miyaura, N. *J. Org. Chem.* **1995**, *60*, ⁷⁵⁰⁸-7510.

^{(11) (}a) Patel, M.; Rohde, J. J.; Kolasa, T. *Tetrahedron Lett.* **2003**, *44*, ⁶⁶⁶⁵-6667. (b) Bridges, A. J.; Lee, A.; Schwartz, C. E.; Towle, M. J.; Littlefield, B. A. *Bioorg. Med. Chem.* **¹⁹⁹³**, *¹*, 403-410. (c) Bridges, A. J.; Lee, A.; Maduakor, E. C.; Schwartz, C. E. *Tetrahedron Lett.* **1992**, *33*, ⁷⁴⁹⁹-7502. (d) Osuga, H.; Suzuki, H.; Tanaka, K. *Bull. Chem. Soc. Jpn.* **¹⁹⁹⁷**, *⁷⁰*, 891-897.

⁽¹²⁾ To the best of our knowledge, there have been no prior reports of this cyclization in the presence of boronic ester or acid functionality.

⁽¹³⁾ Conditions examined: 4-chloro or 4-methoxybenzylmercaptan, various bases, *µ*W, ∆.

⁽¹⁴⁾ Best conditions identified: DMA, K_2CO_3 , MS 4Å, 130 °C, 30 min, *µ*W.; 50% conversion.

TABLE 2. One-Pot Preparation of 6 and Conversion to 2: $({\bf Step 1})^a$ **12** + ${\bf XCH}_2{\bf R}^1$ $({\bf Step 2})^b$ **6** + **4a**

^{*a*} Step 1: 1.0 equiv of 12, 1.1 equiv of XCH_2R^1 , 2.0 equiv of K_2CO_3 , CH₃CN, μ W, *T* as reported, 1 h. *b* Step 2: 0.8 equiv of **4a**, 0.13 equiv of Pd(dppf)Cl₂, 1.6 equiv of K₂CO₃, H₂O/CH₃CN (1:3); μ W, 90 °C, 0.5 h.

boronic ester functionality. Microwave conditions for the onestep preparation of **12** from **8** were rapidly developed. Previously reported conditions for the synthesis of **12** from **8** involve a three-step protecting group strategy.^{9c}

The reaction of **12** and ethyl 2-bromoacetate was examined in the microwave using a variety of organic solvents and bases. Optimal conditions for the preparation of 2-ethyl carboxylate- (benzo[*b*]furan-5-yl)boronate (**6a**) in 73% yield were identified (eq 2).

As observed for the benzothiophene series, crude **6a**, prepared in this manner, can be *used directly without workup, in a subsequent microwa*V*e-assisted Suzuki coupling* to bromoquinazoline **4a**. A brief substrate scope analysis of this one-pot cyclization-Suzuki coupling protocol (Table 2) served to validate route B as a suitable strategy to access target library **2**.

Having met with success in the microwave-assisted preparation of benzothiophenes **1** and benzofurans **2**, we set out to extend the methodology and target compound libraries to include quinazoline imidazopyridines of general structure **3** via route C (Scheme 5).

Optimal conditions for the microwave preparation of 2-phenylimidazo[1,2-*a*]pyridine 6-boronate (**7a**) from **13** and 2-bromo-1-phenylethanone were identified (eq 3).12

SCHEME 5. Route C to Target Library 3

TABLE 3. One-Pot Preparation of 7 and Conversion to 3: $({\bf Step 1})^a$ **13** + ${\bf BrCH}_2{\bf COR}^1$ $({\bf Step 2})^b$ **7** + **4a**

^{*a*} Step 1: 1.0 equiv of **13**, 1.1 equiv of BrCH₂COR¹, EtOH, μ W, 130 °C, 0.5 h. ^b Step 2: 0.8 equiv of **4a**, 0.13 equiv of Pd(dppf)Cl₂, 3.0-3.6 equiv of K2CO3, H2O/EtOH (1:3); *µ*W, 90 °C, 0.5 h.

General conditions for the one-pot, two-step cyclization-Suzuki coupling to access disubstituted imidazopyridines of target library **3** were developed in short order (Table 3).

Further work is underway to extend target libraries $1 - 3$ and to employ our microwave-assisted one-pot cyclization-Suzuki approach in the synthesis of other disubstituted 5,6- and 6,6 fused heterocycles. This work highlights the tolerance of the boronic ester functional group to a variety of reaction conditions. Owing to the wealth of commercially available aryl halides, these methods should allow for the rapid preparation of other modular target libraries from a single commercial or readily available aryl boronate building block.

Experimental Section

Ethyl 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzo- [*b***]thiophene-2-carboxylate (5a).** To a 10-20 mL microwave reaction vessel were added **11** (0.500 g, 2.00 mmol), ethyl 2-mercaptoacetate (0.241 mL, 2.20 mmol), K_2CO_3 (0.276 g, 2.00) mmol), and $CH₃CN$ (5.0 mL). The vessel was sealed, and the system was purged with N₂. The mixture was heated in the microwave for 30 min at 140 °C and then allowed to cool to room temperature, filtered, and concentrated. The crude product was purified by MPLC $(SiO₂,$ eluent: 100% $CH₂Cl₂$) to afford the title compound (0.492) g, 1.48 mmol, 74%) as an off-white solid: LCMS (ESI, pos ion) *m*/*z* 333.1 [M + 1]; HRMS calcd for $[C_{17}H_{22}BO_4S]^+$ 333.13264, found 333.13335; 1H NMR (400 MHz, DMSO-*d*6) *δ* 8.44 (s, 1H), 8.33 (s, 1H), 8.12 (d, $J = 8.0$ Hz, 1H), 7.82 (d, $J = 8.0$ Hz, 1H), 4.42 (q, $J = 8.0$ Hz, 2H), 1.40 (t, $J = 8.0$ Hz, 3H), 1.39 (s, 12H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.9, 144.1, 138.3, 133.1,

^{(15) (}a) Paizs, C.; Tosa, M.; Majdik, C.; Moldovan, P.; Novak, L.; Kolonits, P.; Marcovici, A.; Irimie, F.-D.; Poppe, L. *Tetrahedron: Asymmetry* **²⁰⁰³**, *¹⁴*, 1495-1501. (b) D′Sa, B. A.; Kisanga, P.; Verkade, J. G. *Synlett* **²⁰⁰¹**, 670-672. (c) Pestellini, V.; Giolitti, A.; Pasqui, F.; Abelli, L.; Cutrufo, C.; De Salvia, G.; Evangelista, S.; Meli, A. *Eur. J. Med. Chem.* **¹⁹⁸⁸**, *²³*, 203-206. (d) Lamotte, G.; Demerseman, P.; Royer, R. *Synthesis* **¹⁹⁸⁴**, 1068-1070.

IOC Note

132.8, 132.0, 131.1, 122.5, 83.9, 61.5, 24.7, 14.1 (*C*-*B signal not obser*V*ed up to 40 mg/mL*).

Ethyl 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzofuran-2-carboxylate (6a). To a 10-20 mL microwave reaction vessel were added **12** (0.200 g, 0.806 mmol), ethyl bromoacetate (0.098 mL, 0.886 mmol), K_2CO_3 (0.223 g, 1.61 mmol), and CH₃-CN (2.0 mL). The vessel was sealed, and the system was purged with N_2 . The mixture was heated in the microwave for 60 min at 150 °C and then allowed to cool to room temperature, transferred to round-bottom flask with $CH₃CN$, and concentrated. The crude product was purified by MPLC (SiO₂, eluent: $100\% \text{ CH}_2\text{Cl}_2$) to afford the title compound (0.187 g, 0.590 mmol, 73%) as an offwhite solid: LCMS (ESI, pos ion) m/z 317.0 [M + 1]; HRMS calcd for $[C_{17}H_{22}BO_5]^+$ 317.15548, found 317.15580; ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (s, 1H), 7.85 (s, 1H), 7.84 (d, $J = 8.0$ Hz, 1H), 7.78 (d, $J = 8.0$ Hz, 1H), 4.43 (q, $J = 8.0$ Hz, 2H), 1.38 (t, $J = 8.0$ Hz, 3H), 1.38 (s, 12H); ¹³C NMR (100 MHz, DMSO- d_6) *δ* 158.6, 156.9, 145.3, 133.5, 130.5, 126.6, 114.2, 111.7, 83.8, 61.3, 24.7, 14.1.

2-Phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-*H***imidazo[1,2-***a***]pyridine Hydrobromide (7a).** To a 10-20 mL microwave reaction vessel were added **13** (0.200 g, 0.909 mmol), 2-bromoacetophenone (0.199 g, 1.00 mmol), and EtOH (2.0 mL). The vessel was sealed, and the system was purged with N_2 . The mixture was heated in the microwave for 30 min at 130 °C. After cooling to room temperature, the precipitate was collected using a membrane Buchner filtration apparatus and washed with EtOH to afford the title compound (0.177 g, 0.440 mmol, 48%) as a white solid: HPLC complete hydrolysis to boronic acid on LC column, 99.4%; LCMS (ESI, pos ion) complete hydrolysis to boronic acid on LC column, m/z 239.1 [M + 1]; HRMS calcd for $[C_{19}H_{22}$ - BN_2O_2 ⁺ 321.17688, found 321.17792; ¹H NMR (400 MHz, DMSO-*d*6) *^δ* 9.20 (s, 1H), 8.88 (s, 1H), 8.06-8.03 (m, 4H), 7.72- 7.64 (m, 4H), 1.45 (s, 12H); 13C NMR (100 MHz, DMSO-*d*6) *δ* 141.2, 136.4, 135.9, 134.9, 130.4, 129.5, 126.6, 126.2, 112.0, 111.2, 84.8, 73.5, 24.7.

General Method A: Preparation of Benzothiophene Quinazolines (1). To a 10-20 mL microwave reaction vessel were added **11** (0.200 g, 0.800 mmol), the *thiol* (0.880 mmol), K_2CO_3 (0.111) g, 0.800 mmol), and $CH₃CN$ (2.0 mL). The vessel was sealed, and the system was purged with N_2 . The mixture was heated in the microwave for 30 min at 140 °C then cooled to room temperature and unsealed. To the reaction vessel were added **4a** (0.149 g, 0.667 mmol), Pd(dppf)Cl₂ (0.082 g, 0.100 mmol), K₂CO₃ (0.184 g, 1.33 mmol), $CH₃CN$ (2.0 mL), and water (1.3 mL). The vessel was sealed, and the system was purged with N_2 . The mixture was heated in the microwave for 0.5-1.5 h at 90 °C and then allowed to cool to room temperature, transferred to a round-bottom flask with CH3- CN, and concentrated. The initial crude product was first purified by a MeOH wash. The solid was then further purified by MPLC $(SiO₂, gradient element: 20 to 40% 90:10:1 (CH₂Cl₂/CH₃OH/NH₄$ OH) in CH_2Cl_2).

General Method B: Preparation of Benzofuran Quinazolines (2). To a 10-20 mL microwave reaction vessel were added **¹²** $(0.200 \text{ g}, 0.806 \text{ mmol})$, the *halide* (0.886 mmol) , K₂CO₃ $(0.223 \text{ g},$ 1.61 mmol), and $CH₃CN$ (2.0 mL). The vessel was sealed, and the system was purged with N_2 . The mixture was heated in the microwave for 1 h at 140-¹⁵⁰ °C and then cooled to room temperature and unsealed. To the reaction vessel were added **4a** (0.150 g, 0.670 mmol), Pd(dppf)Cl₂ (0.082 g, 0.101 mmol), K₂- CO_3 (0.185 g, 1.34 mmol), CH₃CN (2.0 mL), and water (1.3 mL). The vessel was sealed, and the system was purged with N_2 . The mixture was heated in the microwave for 30 min at 90 °C then allowed to cool to room temperature, transferred to a round-bottom flask with CH₃CN, and concentrated. The initial crude product was first purified by a $CH₃OH$ wash. The solid was then further purified by MPLC (SiO₂, gradient 0 to 40% 90:10:1 (CH₂Cl₂/CH₃OH/NH₄-OH) in $CH₂Cl₂$).

General Method C: Preparation of Imidazopyridine Quinazolines (3). To a 10-20 mL microwave reaction vessel were added **13** (0.200 g, 0.909 mmol), the *bromo ketone* (1.00 mmol), and EtOH (2.0 mL). The vessel was sealed, and the system was purged with N2. The mixture was heated in the microwave for 30 min at 130 °C and then cooled to room temperature and unsealed. To the reaction vessel were added **4a** (0.170 g, 0.758 mmol), Pd(dppf)Cl₂ (0.093 g, 0.114 mmol), K₂CO₃ (0.356 g, 2.58 mmol), EtOH (2.0 mL), and water (1.3 mL). The vessel was sealed, and the system was purged with N₂. The mixture was heated in the microwave for 30 min at 90 °C then allowed to cool to room temperature, transferred to a round-bottom flask with EtOH, and concentrated. The initial crude product was first purified by a CH₃OH wash. The solid was then further purified by MPLC $(SiO₂, gradient element:$ 20 to 40% 90:10:1 (CH₂Cl₂/CH₃OH/NH₄OH) in CH₂Cl₂).

Acknowledgment. J.R.V. thanks Amgen, Inc., for a summer internship. We thank Mr. Russell Graceffa and Dr. Jay Larrow for the synthesis of **4a** and **11**.

Supporting Information Available: General experimental considerations. New methods for preparing **4a**, **11**, and **12**. Experimental details and analytical data for libraries **¹**-**3**. 1H and 13C NMR spectral data of boronates **5a**, **6a**, and **7a**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO060218P